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1. Introduction 

Price volatility in agricultural markets is still an important matter in the discussion at both the 
political and the scientific level. Starting from the food price crisis of 2007/08, not only the 
observation of increasing price levels but also their increased volatility on key markets (most 
notably grains) has triggered many studies both at the conceptual and at the empirical level. 
Policy makers have responded, too; policies for stabilising producer and consumer prices 
have experienced a revival in the discussions surrounding the Common Agricultural Policy 
reforms, and concerns about the impact of insufficient regulation for derivatives markets with 
relevance in agriculture have played a role in the ongoing reform process of the EU's finan-
cial market regulation. The agreement reached in January 2014 in the trilogue process on 
the reform of the Markets in Financial Instruments Directive (MiFID), which, among other 
things, introduced a mechanism for setting position limits and mandatory reporting of posi-
tions held, is a case in point. 

Despite this focus on agricultural price volatility, there has not yet been reached a full con-
sensus about the question which drivers were shaping price volatility in agricultural markets 
over the past years. In an overview of the existing literature (Brümmer et al. 2013b), a num-
ber of broader categories is identified which were often mentioned in the studies contained in 
the review. Figure 1 (Brümmer et al. 2013a) gives an overall impression of the frequency at 
which a given category was addressed in the existing literature. The colour coding allows to 
split each category according to the way each of the studies treated the corresponding cate-
gory: When a paper addressed the category in an empirical way, it is counted towards the 
red segment of the corresponding bar; if no attempt at empirical quantification of the vari-
ables' impact was undertaken, the study was counted towards the grey segment.  

From Figure 1, it is obvious that financialisation and speculation were by far the most impor-
tant in overall terms, followed by a set of macro-economic variables (oil prices, exchange 
rate volatility, and increasing consumption). Biofuel mandates, as an important policy factor, 
came next, followed by weather shocks. The final two categories were never addressed 
quantitatively but only discussed at the conceptual level: Underinvestment in agriculture and 
the impact of ad hoc policy measures are indeed difficult to quantify. There is, however, a 
major drawback in the vast majority of the existing studies: Usually, the focus is put on one 
(in rare cases up to three) agricultural markets. To restrict a single study to a narrowly de-
fined subset of agricultural markets is, on the one hand, a very meaningful approach be-
cause it allows careful modelling of price volatility and the factors behind it. On the other 
hand, the opportunity to study a broader set of markets, and the price volatility spillovers 
among them is missed. Furthermore, the heterogeneity of price volatility developments be-
tween markets is easily lost out of sight, too.  

Our study aims at addressing this research gap. We provide a thorough analysis of agricul-
tural price volatility for 15 different markets of global importance, grouped into five commodity 
groups which were formed on the basis of the expected interdependence between the mar-
kets. Monthly price volatility is estimated for each product using a standardised GARCH 
framework. In order to address a broad picture regarding the impact of exogenous drivers 
and the relevant price volatility spillovers, we employ in a second stage a vector-
autoregressive (VAR) model for the estimated volatilities for each of the five groups. In each 
VAR model, we use the same set of variables as potential exogenous drivers of price volatil-
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ity. These candidate variable are chosen to represent the most important categories from 
Figure 1: Financialisation, oil prices, low stocks, exchange rates, increased consumption, 
and weather shocks. Policy related variables (biofuel mandates, ad-hoc policy interventions) 
were excluded since it is difficult to define meaningful continuous variables for policy 
changes. The role of biofuels is, however, not neglected since bioethanol and biodiesel are 
included in the set of markets analysed.  

 

Figure 1: Drivers of food price volatility 

In the next section (Section 2), we briefly delineate how we selected the agricultural products 
(including selected biofuels) in each commodity group, for which we model the estimated 
volatilities as an interdependent system. We follow up in Section 3 with an explanation of the 
estimation procedure for price volatility. In the following Section, we explain which variables 
were used to capture the categories of drivers outlined above. Given that the number of po-
tential candidate variables is huge, we then continue in Section 5 with an explanation of our 
model selection procedure. We rely on automatic model selection in order to avoid subjective 
biases in the general-to-specific modelling exercise, and to facilitate reproducibility of our 
results. The subsequent Section presents the parameter estimates by commodity groups, 
and discusses the results on two aspects of major relevance: The estimated impact of the 
drivers, and the identified spillovers among the price volatilities of the commodities included 
in each group. Section 7 concludes by pointing out the lessons which can be learned from 
our analysis with regard to policy implications. 
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2. Identifying relevant commodity groups 

As a contribution to the volatility spillover and volatility drivers literature, we develop an inno-
vative spillover - driver model. In order to find influential factors which affect food price volatil-
ity and to quantify the effects of these drivers on volatility we select five groups of commodi-
ties. Table 1 shows the commodities which are considered in each group. Each group con-
sists of commodities which are likely to be affected by a changing volatility of the other mem-
bers of the group. 

Table 1: Groups and commodities 

 Groups 
Grain Oilseed Vegetable oils Sugar Meat 

C
om

m
od

iti
es

 

Wheat (soft) 
(US) 

Soybean 
(US) 

Palm oil  
(Malaysia) 

Raw sugar 
(World) 

Pork 
(Germany) 

Corn 
(US) 

Rapeseed 
(EU) 

Soybean oil 
(US, Argentina) 

Bioethanol 
(Brazil) 

Corn 
(US) 

Bioethanol 
(US)  

Rapeseed oil 
(EU)  

Soybean meal 
(US) 

Ammonia 
(US)  

Sunflower oil 
(Argentina)   

  
Biodiesel 

(Germany)   
 

The interrelation between commodities, bioenergy and biofuel markets in different geo-
graphical regions is an important issue of our volatility analysis and mainly motivates the 
composition of the commodity groups. 

Group one is called “grains” and consists of wheat, corn, bioethanol and ammonia, all from 
the US. Bioethanol volatility is chosen as an endogenous variable in this group because it is 
supposed to be affected by grain price volatility as bioethanol is extracted from corn in the 
US. Wheat is included because it is usually deemed the lead market for price formation in the 
grains complex. Additionally, ammonia is chosen because it is the main fertilizer used for 
grain production. Therefore, it may influence grain price volatilities.  

Group two is called “oilseeds” and consists of soybeans from the US and rapeseed from the 
European Union (EU). The soybean price volatility and rapeseed price volatility are likely 
related to each other as the protein component in both oilseeds serves as a major source of 
meal for animal husbandry feed. The oil component is used for human consumption and in-
dustrial uses. The latter includes, predominantly in the EU, the use of vegetable oils for bio-
diesel production. Hence, the markets for oilseeds are characterised by a high extent of sub-
stitution possibilities in consumption. 

These potentially strong linkages via substitution in consumption is at the core of the compo-
sition of our third group, “vegetable oils”. It contains palm oil from Malaysia, soybean oil from 
Argentina, rapeseed oil from North West Europe, sunflower oil from Argentina and biodiesel 
from Germany. These agricultural markets are considered jointly with the market for biodiesel 
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as a major use of vegetable oils in the EU. Moreover, this group captures possible volatility 
spillovers between different geographical regions. 

As sugar plays an important role in bioethanol and biofuel production in South America, we 
have considered a fourth group for sugar and bioethanol from Brazil. The final group is called 
“meat” and includes pork from Germany as well as corn and soybean meal from the US. The 
analysis of the volatility spillover effects among meat markets and feed grains is the major 
objective of the volatility analysis for this group which includes the major exportable meat 
together with two major feedstock components.. 

3. Estimating volatility 

While food prices are easily observable, price volatilities cannot be observed, but have to be 
estimated. Several methods of volatility estimation exist, like realised volatilities, model 
based ex-post volatilities or ex-ante volatilities like option implied volatilities. But not only the 
estimation approach per se is crucial for the estimation result, also the investigated time 
frame and the data frequency matter. For our investigation, we choose a monthly data fre-
quency because it is supposed to be a relevant horizon for decision makers in commodity 
markets. The GARCH (1,1) model5  is chosen as the most appropriate model for our study 
because implied volatilities can only be calculated for some commodities due to a lack of 
sufficient options data, and realised volatilities require higher frequency data to be robust 
estimators, which is also not available for all commodities. 

Price volatilities for all commodities in our study are estimated by fitting a GARCH (1,1) 
model to monthly continuously compounded returns. If data is available at a weekly or daily 
frequency, the latest available price within a month is taken for the return calculation. The 
lengths of the time series for the volatility calculations are different for different commodities, 
starting with the first available data for each commodity, but not earlier than January 1990. 
This is done even if the time series used in the VAR model starts at a later point of time due 
to data unavailability of other commodities in that group. 

The mean process of the returns is modelled either as an AR(12) or AR(1) process, depend-
ing on the seasonality of the commodity prices.6 In case of an AR(1) mean process, Ljung-
Box tests with lags 10, 15 and 20 are applied and indicate in all cases that residuals are free 
of autocorrelation. 

The error distribution used for the GARCH estimations is student-t. The resulting GARCH 
models lead to a stationary volatility process for all selected commodities (α+β<1). This result 
justifies the use of the vector autoregressive (VAR) model in volatility levels that we introduce 
in Section 5 without consideration of non-stationarity and co-integration. Finally, the monthly 
volatility estimates resulting from the GARCH are annualised by multiplying them with √12 . 
Table 2 summarizes the GARCH estimations for the different commodities and provides 
some descriptive statistics for the resulting volatilities.  

                                                 
5 See Bollerslev (1986). 
6 The results are robust against controlling for seasonality by using monthly dummy variables in the volatility esti-
mation model. 
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Table 2 : Description of annualised GARCH (1,1) volatility estimations  

Commod. Group Region Start End Mean 
process Mean SD Min. Max. 

Wheat (Soft) 1 US Feb. 
1990 

Dec. 
2012 AR(12) 33.14% 8.17% 22.99% 58.07% 

Corn 1 & 5 US Feb. 
1990 

Dec. 
2012 AR(12) 28.72% 11.71% 17.72% 79.69% 

Bioethanol 1 US Feb. 
1990 

Dec. 
2012 AR(1) 26.72% 9.16% 13.67% 49.85% 

Ammonia 1 US Oct. 
1991 

Dec. 
2012 AR(1) 53.12% 25.37% 36.88% 251.47% 

Soybean 2 US Feb. 
1990 

Dec. 
2012 AR(1) 26.22% 9.43% 14.96% 70.95% 

Rapeseed7 2 Europe May 
2003 

Sept. 
2012 AR(1) 22.38% 6.68% 14.93% 44.52% 

Palm oil 3 Malaysia Feb. 
1990 

Dec. 
2012 AR(1) 23.48% 6.11% 17.11% 54.91% 

Soybean oil 3 Argentina Dec. 
1995 

Dec. 
2012 AR(1) 28.34% 3.70% 22.10% 42.51% 

Rapeseed 
oil 3 Northwest 

Europe 
Oct. 
1995 

Dec. 
2012 AR(12) 22.58% 9.15% 15.63% 67.73% 

Sunflower oil 3 Nether-
lands 

Feb. 
1990 

Dec. 
2012 AR(12) 22.04% 4.73% 18.71% 64.44% 

Biodiesel 3 Germany Aug. 
2002 

Dec. 
2012 AR(1) 11.59% 2.19% 7.67% 15.62% 

Sugar (raw) 4 World Feb. 
1990 

Dec. 
2012 AR(12) 30.17% 7.83% 19.52% 62.12% 

Bioethanol 4 Brazil Dec. 
2002 

Dec. 
2012 AR(1) 44.04% 0.04% 43.72% 44.05% 

Pork 5 Germany Feb. 
1990 

Dec. 
2012 AR(12) 24.25% 8.93% 14.34% 73.22% 

Soybean 
meal 5 US Feb. 

1990 
Dec. 
2012 AR(1) 22.10% 4.78% 16.37% 47.99% 

Source: Own estimates.

4. Incorporating exogenous drivers of volatility 

In the following, we present how we measure the potential volatility drivers used in the VAR 
model. We follow the categories which were identified in the literature review (Brümmer et al. 
2013b). Further details on specific steps in the calculations or detailed information on the 
data sources can be found in the Appendix.  

Crude Oil Price Level and Volatility 

There are multiple pathways through which oil prices affect agricultural markets. Over the 
past decades, linkages via the input side have been most important. Fossil fuels are a major 
direct input in agricultural production, and are also an important raw material in pesticide 
production. In crop production, nitrogen is limiting in most production system, and its produc-
tion via the Haber-Bosch procedure relies on cheap energy usually provided by natural gas. 
On the output side, the increasing role of biomass over the past decade has partially revived 
an old linkage: Before the industrialisation of agriculture, feed for draught animals was a ma-

                                                 
7 Due to missing reliable spot data of European rapeseed, the spot price is approximated with the price of rape-
seed futures, traded at MATIF in Paris. Precisely, on the last trading day of each month the closing price of the 
futures contract with the shortest time to maturity is used as the proxy for the spot price.  
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jor use of agricultural products. Today, bioenergy, in particular biofuel policies, strengthen the 
link between energy and food.  

These factors suggest that prices for oil (as the dominant fossil energy) and agricultural 
products are linked in levels. For price volatility, the linkages might be less obvious. Never-
theless, oil prices are notorious for their volatile and sometimes erratic price behaviour, and 
since linkages have strengthened over the past years, part of the volatility from oil prices 
might spill over to agricultural product markets. The reverse direction is unlikely to be rele-
vant, given the relative size of the markets. The impacts of oil and oil price volatility should be 
most visible in markets where biofuels play an important role, and less important in livestock 
products. 

Our main focus are spot markets which are most important for price formation in a global 
perspective. Hence, the monthly crude oil price level is calculated as the average daily price 
within a month based on daily data of West Texas Intermediate (WTI) crude oil free on board 
(F.O.B.) at Cushing, Oklahoma.8 

Crude oil price volatility is estimated by the implied volatilities of New York Mercantile Ex-
change (NYMEX) options on crude oil futures. The futures contracts refer to WTI crude oil. 
Because the volatility is extracted from currently traded options, the estimator needs no his-
torical price data and is therefore not influenced by outdated information. Implied volatility is 
supposed to lead to better volatility predictions because it extracts the expectations of market 
participants, which consider recent information in their decisions.9 The calculation of the im-
plied volatility is based on the model-free approach of Bakshi et al. (2003). This approach 
has the major advantage over the standard Black-Scholes volatilities that no assumptions on 
the price or return distribution are needed.  

The crude oil price volatility in a specific month is estimated by the volatility that is implied in 
options traded on the last trading day of the previous month with a time to maturity of thirty 
calendar days. If there is no option traded with the required maturity, the volatility is linearly 
interpolated between the implied volatilities of the nearest options with less than thirty calen-
dar days to maturity and with more than thirty calendar days to maturity.  

The crude oil price volatility in a specific month is estimated by the volatility that is implied in 
options traded on the last trading day of the previous month with a time to maturity of thirty 
calendar days. If there is no option traded with the required maturity, the volatility is linearly 
interpolated between the implied volatilities of the nearest options with less than thirty calen-
dar days to maturity and with more than thirty calendar days to maturity.  

Dollar Strength Level and Volatility 

Most of the international trade in agricultural commodities is carried out in US Dollars. Thus, 
shocks to the US Dollar will have an impact on prices in domestic currencies. Exchange rate 
pass through in agricultural markets remains an active area of research, with evidence point-
ing towards a less than perfect pass-through of exchange rate changes to importer markets. 
The pricing-to-market literature attributes such imperfections often to market power on the 

                                                 
8 Source: Thomson Reuters Datastream, Code = "CRUDWTC". 
9 See Poon & Granger (2005), Poon & Granger (2003) and Christoffersen et al. (2011) for a documentation of  the 
predominance of implied volatilities for many different markets. 
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exporter side. In any case, if exchange rate changes are at least partially transmitted to do-
mestic prices, also volatilities in exchange rates might be transmitted to agricultural markets. 

The dollar strength is measured by the trade weighted dollar index, which is calculated by the 
Federal Reserve (FED) on a daily basis and weights the bilateral exchange rates of the US 
Dollar against seven major currencies according to their importance for trade competition.10 
The monthly dollar strength is the average index value of the respective month. 

To capture not only the strength of the US Dollar, but also its volatility, the realised volatility is 
calculated based on returns, i.e. the daily percentage changes of the trade weighted dollar 
index. In order to circumvent underestimation of the true volatility if the returns are positively 
autocorrelated, the applied formula contains a correction term for autocorrelation:11
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The realised volatility is calculated for each month using the daily returns and annualised 
afterwards with √12.   

Speculation and Financialisation 

It is theoretically non-controversial that "normal" speculators are necessary for a well func-
tioning liquid market because they base their decisions on fundamental values and therefore 
have a balancing, price stabilizing effect (Algieri 2012; Borin & Di Nino 2012). However, the 
volatility effects of both excessive speculation, i.e., an amount of trading by speculators be-
yond the level needed to balance the demand of hedgers, and investments in commodity 
index funds aimed to diversify investors' portfolios, remain controversial. 

As a measure for excess speculation Working's T-Index is used, which sets speculative ac-
tivities in relation to hedging needs:12 

ݔ݁݀݊ܫ ݊݋݅ݐ݈ܽݑܿ݁݌ܵ ൌ  1 ൅
ܵ௦

ௌܪ ௅ܪ
ௌܪ ݎ݋݂  ൒  ݀݊ܽ ௅ܪ

൅
 

ݔ݁݀݊ܫ ݊݋݅ݐ݈ܽݑܿ݁݌ܵ ൌ  1 ൅
ܵ௅

ௌܪ ൅ ௅ܪ
ௌܪ ݎ݋݂  ൏  ௅ܪ

with 

ൌ ܵ ௦ܵ ݏ݊݋݅ݐ݅  ݀݊ܽ ݏ݊݋݅ݐ݅ݏ݋݌ ݐݎ݋݄ݏᇱݏݎ݋ݐ݈ܽݑܿ݁݌ ܵ௅ ൌ ݏ݋݌ ݃݊݋ᇱ݈ݏݎ݋ݐ݈ܽݑܿ݁݌ܵ

௦ܪ ൌ ௅ܪ ݀݊ܽ ݏ݊݋݅ݐ݅ݏ݋݌ ݐݎ݋݄ݏᇱݏݎ݁݃݀݁ܪ ൌ  ݏ݊݋݅ݐ݅ݏ݋݌ ݃݊݋ᇱ݈ݏݎ݁݃݀݁ܪ

                                                 
10 For details on the construction of the index weights see Loretan (2005). 
11 See Marquering & Verbeek (2009). 
12 See Working (1960). 
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If there are more short hedgers than long hedgers in the market, there is a need for addi-
tional market participants - speculators - to fulfil the net short hedging demand by taking long 
positions. So in this case speculative short positions are not needed for generating neces-
sary counterparties and a better functioning market, but can be interpreted as excessive 
speculation. The more speculative short positions are present, i.e. the higher the speculative 
activities not accompanied by hedging needs are, the higher is the value of the speculation 
index. For net long hedging demand the situation is the other way round and the index rises 
again with speculative long positions above hedging needs. The speculative and hedging 
positions are calculated with data from the weekly U.S. Commodity Futures trading Commis-
sion's (CFTC) Commitment of Traders (COT) reports that document trading activities in sev-
eral commodity futures markets. For the index calculation, non-commercial (commercial) 
positions are identified as speculative (hedging) positions and the average positions over the 
month are used. This classification generates some noise because the group of commercial 
traders may contain some speculators and vice versa. It is supposed that in the last decade 
this noise has increased due to commodity index funds. A large part of index investors con-
sist of swap dealers, which make their core business with traders that want to diversify their 
portfolio over the counter and hedge their positions in the futures market. These traders act 
for the most part for non-commercials that want to invest in commodities but are still classi-
fied by the CFTC as commercials, i.e., they are  in the same group as producers and con-
sumers, because of their hedging activity in this specific market. 

Therefore, besides the speculation measure a financialisation measure is integrated in the 
analysis, which is intended to measure the inflow of new capital in commodity markets by 
index investors. The measure is calculated as the relative change of net long positions of 
commodity index traders (CIT), based on the CFTC supplemental report that supplies infor-
mation about index trader positions. The change in positions is calculated as the difference 
between the CIT net long positions on the last day of the relevant month and on the last day 
of the previous month.13 As the reports with CIT information are available since 2006, the net 
position changes in the months before 2006 are extrapolated by approximating the relative 
position change with the average monthly position change from January 2006 to January 
2007. Using this procedure, the financialisation measure is constant until January 2006. 

The speculation and financialisation measures are calculated separately for each group and 
can be interpreted as a benchmark speculation / financialisation measure for the group. If 
there is only one commodity for which the required data is available, this commodity's specu-
lation index or CIT net position changes are taken as exogenous variables for the whole 
group. If there is data available on more than one commodity, the measures are calculated 
for all these commodities and weighted according to the open interest of the individual com-
modity in the relevant month. The following table shows the commodities that were used for 
the calculation of the speculation / financialisation measures for the different groups. 

                                                 
13 If no report is published on the last day of the month, the position is determined by linear interpolation of the 
positions according to the month's last and the next month's first report. 
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Table 3: Benchmark commodities for speculation / financialisation measures 

Group Speculation measure Financialisation measure 
Group 1 Wheat (2 types), Corn Wheat (2 types), Corn 
Group 2 Soybeans Soybeans 
Group 3 Soybean oil Soybean oil 
Group 4 Sugar No. 11 Sugar No. 11 
Group 5 Corn, Soybean Meal Corn 

Stock data 

Grain stock levels changes and the stocks-to-use ratio are also often found to be a major 
cause of volatility. Stocks data can be a valuable complement to imperfect price data as an 
indicator of vulnerability to shortages and price spikes because high stock levels can serve  
as a buffer for growing demand and mitigate shortages (Bobenrieth et al., 2013). Therefore, 
we use the monthly change of the projection of the stock level at the end of the crop year to 
capture changing expectations on stocks. Moreover, we calculated the monthly stocks-to-use 
ratio projection, i.e. the monthly estimated stock at the end of the agricultural year over the 
monthly estimated consumption for the same agricultural year. The data is based on reports 
published by the World Agricultural Outlook Board (WAOB) of the United States Department 
of Agriculture (USDA). 

Demand Increase 

The general demand increase for food items in developing countries or emerging economies 
is considered by many researchers as a major driver of food price volatility. The relative 
change of the sum of the quarterly GDP of the BRICS14 countries plus Indonesia is consid-
ered as a proxy for demand shocks at the global level. The relative change in GDP at the 
end of each quarter compared to the end of the previous quarter is used in the model as a 
driver for the next three months. 

Weather Shocks 

Several authors emphasize the importance of the climate change on food price volatility 
(Roache 2010; Algieri 2013). One of the major climatic phenomena are large scale fluctua-
tions in air pressure occurring between the western and eastern tropical Pacific (the state of 
the southern Oscillation). We used the Southern Oscillation Index (SOI) as exogenous varia-
ble, which indicates air pressure patterns typical for El Niño and La Niña events. As both 
events influence different areas of the world, we disentangle them by separating the SOI 
Index into an index for the negative values (El Niño) and one for the positive values (La Ni-
ña). 

5. Specification of a VAR model for volatility analysis 

Our empirical study addresses two important questions. (i) What are the main drivers of vola-
tility? (ii) Are there volatility spillovers between interrelated commodity markets? The econo-

                                                 
14 Brazil, Russia, India, China, South Africa. 
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metric framework of vector autoregressive (VAR) models, as pioneered by Sims (1980) is 
ideally suited to answer these questions. There are different advantages of this framework. 
First, the approach allows for the analysis of volatility spillovers by including lagged volatil-
ities of all the commodities in a system as explanatory variables. Second, the VAR approach 
provides specific tools for the analysis of spillovers, in particular the impulse-response func-
tion, which shows how a volatility shock in a certain commodity is transmitted through the 
whole system and potentially affects the volatilities of other commodities. Finally, one can 
easily include exogenous explanatory variables in the model, which allows us to quantify the 
effects of potential volatility drivers. 

The specification of a VAR model involves three steps. The first one is the choice of a set of 
potentially interrelated commodities or products. As outlines in Section 2, we choose five 
groups, namely grains (4 products), oilseeds (2 products), vegetable oils (5 products), sugar 
(2 products), and meat (3 products). The estimated GARCH return volatilities of the corre-
sponding products, as provided in Section 3, constitute the set of endogenous variables of 
the five VAR models that we use. 

The second step is the selection of exogenous variables, i.e., potential volatility drivers. The 
specific choices we make are outlined in Section 4. A major contribution of our study is the 
simultaneous investigation of many potential drivers, which allows us to quantify the addi-
tional impact of a specific driver on volatility. Such an approach avoids premature interpreta-
tions arising from univariate analyses that fail to control for the effects of other drivers and of 
volatility spillovers from other markets. Therefore, our approach delivers a comprehensive 
picture of the (relative) importance of different drivers. 

Our choice of a rich model dynamics and a large number of exogenous variables potentially 
leads to very large models with many insignificant variables that make no contribution to the 
explanation of volatility. Therefore, the specification of a VAR model requires a third step that 
is inherent in any general-to-specific econometric modelling: the identification of relevant 
variables and the exclusion of irrelevant ones. Within the framework of general-to-specific 
modelling, much progress has been made in automatic model selection or data mining. Start-
ing with a general unrestricted model, this approach reduces the complexity of the model 
step by step. The main idea is to formulate algorithms based on sequential significance test-
ing of variables or blocks of variables, model diagnostics, and backtesting that finally identify 
adequate models which resemble the true data structure. Several studies have documented 
the good performance of automatic model selection procedures (see, e.g., Hoover & Perez 
(1999); Hendry & Krolzig (1999); Hendry & Krolzig (2005)). Automatic model selection is very 
attractive for our study, because it minimizes any bias introduced by subjective choices and 
‘’lets the data speak” which volatility drivers are important.  Given the many potential drivers 
and the many different opinions about their (relative) importance, such an element of objec-
tivity is very helpful. 

In our study, we use the autometrics algorithm developed by Doornik (2009), which is a fur-
ther improvement over previous procedures.15 The algorithm allows for the specification of 
some parameters (p-values) that govern how easily a variable is excluded from the model. 
Because we don’t want to miss out any significant volatility drivers, we choose rather high p-
values (10%), which lead to relatively large models. The results that we present in the follow-
                                                 
15 For details on the autometrics algorithm see Doornik (2009). 
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ing section are the final outcome of the model specification process based on the automet-
rics algorithm.  

6. Results and interpretation 

6.1.  Parameter estimates and price volatility drivers 

In this section, the estimation results of the VAR models according to the methodology out-
lined above are presented. We focus in the first subsection on the exogenous drivers of vola-
tility. Subsequently, the focus is on volatility spillovers among the commodities in each group.  

Group 1: The grains complex  

At the level of the whole system, it is remarkable that the residuals are barely correlated 
across equations. Given that the dependent variable is price volatility at the monthly level, 
however, this outcome is not too surprising. The interdependence of the commodities is 
mostly driven via the supply side and less via the demand side so that at a given point in 
time, immediate volatility spillovers are relatively limited. The detailed parameter estimates 
are shown in Table 4 below. 

All endogenous variables respond strongly to their lagged own volatility at lag 1. For wheat, 
no other variable except for the own stocks-to-use ratio exerts any statistically significant 
impact. This indicates the high responsiveness of the wheat market to its own market specif-
ics, and hints to the function of the wheat price as a cornerstone of agricultural price forma-
tion in the grains complex. For corn, in addition to the past own volatility lagged by one 
month, the fourth lag is statistically important, too. Further details on the dynamics implied by 
these estimates are given in the next subsection.  

Among the exogenous drivers, two variables are statistically significant. The sign of the rela-
tive change of the projected ending stocks is positive. This result might look surprising at a 
first glance; however, since changes in projections constitute a measure of new information, 
the positive sign can be explained as an increase in corn price volatility due to larger 
amounts of new information. Our financialisation proxy, the percentage change in the long 
positions in the futures market, has a negative sign. This indicates that the liquidity effect 
seems to dominate. A larger number of long positions reduces corn price volatility.  

For bioethanol, in addition to the own lag at period 1, we find a lagged spillover from the 
wheat market with a negative sign at lag 3. Among all exogenous drivers tested, we find that 
oil price volatility is statistically significant with the expected sign. At elevated levels of oil 
price volatility, a higher bioethanol volatility is observed. The effect, however, is rather small 
in magnitude.  

Ammonia is included as one of the major inputs. Here, a number of different lags from wheat 
and corn volatility are statistically significant so that a parameter-wise interpretation is diffi-
cult; we shed some light on the spillovers in the next subsection using impulse response 
functions. As for wheat volatility, the stocks-to-use ratio is significant with the expected sign: 
High ending stocks for wheat relative to world consumption reduce price volatility for ammo-
nia, too. In addition, exchange rate volatility is statistically significant with a positive sign, in-
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dicating that the price volatility of ammonia, which is intensively traded at the international 
level, is responsive to volatility of the US dollar exchange rate. 

Table 4: Results group "grains" 

Variable Wheat Corn Bioethanol Ammonia 
Wheat (soft) volatility.l1 0.9074 -0.0869 0.0626 0.1158 
  (0.0664) (0.2876) (0.0455) (0.4456) 

Wheat (soft) volatility.l2 -0.0200 0.2773 0.0873 0.7293 
  (0.0902) (0.3906) (0.0618) (0.6051) 

Wheat (soft) volatility.l3 0.0507 0.1453 -0.1922 -0.0664 
  (0.0904) (0.3915) (0.0619) (0.6065) 

Wheat (soft) volatility.l4 0.0299 -0.2468 -0.0236 -0.6847 
  (0.0704) (0.3052) (0.0483) (0.4727) 

Corn volatility.l1 0.0035 0.4664 0.0083 0.0563 
  (0.0144) (0.0622) (0.0098) (0.0963) 

Corn volatility.l2 -0.0025 -0.0888 -0.0011 -0.1919 
  (0.0147) (0.0637) (0.0101) (0.0987) 

Corn volatility.l4 -0.0135 -0.1281 0.0024 0.1490 
  (0.0129) (0.0558) (0.0088) (0.0865) 

Bioethanol (US) volatility.l1 -0.0175 -0.1142 0.9588 -0.2505 
(0.0263) (0.1139) (0.018) (0.1764) 

Ammonia volatility.l1 -0.0028 -0.0366 0.0000 0.7376 
  (0.0098) (0.0426) (0.0067) (0.066) 

Ammonia volatility.l2 -0.0088 -0.0340 0.0104 0.0217 
  (0.0123) (0.0532) (0.0084) (0.0824) 

Ammonia volatility.l3 0.0081 0.0008 -0.0159 -0.2803 
  (0.0123) (0.0534) (0.0084) (0.0827) 

Ammonia volatility.l4 -0.0059 0.0332 0.0098 0.1338 
  (0.0093) (0.0405) (0.0064) (0.0627) 

Crude oil price volatility 0.0115 0.0932 0.0187 0.4435 
  (0.0165) (0.0714) (0.0113) (0.1106) 

Dollar strength volatility 0.0774 0.1456 -0.0025 0.8232 
  (0.0629) (0.2727) (0.0431) (0.4225) 

SOI negative (El Niño)  -0.0028 -0.0118 -0.0005 0.0282 
  (0.0028) (0.012) (0.0019) (0.0186) 
Wheat  Stocks-to-use ratio 
(US) 

-0.0249 -0.0457 0.0045 -0.1352 
(0.0120) (0.052) (0.0082) (0.0806) 

Corn (US) Stock Projection 
(relative change)  

0.0155 0.2668 -0.0012 0.1045 
(0.0113) (0.0489) (0.0077) (0.0757) 

CITlongChange_rel -0.0017 -0.5337 0.0078 -0.1078 
  (0.0431) (0.1867) (0.0295) (0.2892) 

Constant 0.0244 0.2037 0.0121 0.0653 
  (0.0119) (0.0514) (0.0081) (0.0796) 

Trend 0.0000 0.0003 0.0001 0.0002 
  (0) (0.0002) (0) (0.0003) 

Source: Own estimates. 
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Group 2: Selected oilseeds 

For this group, spot prices are not available to the same extent as in the US grains market. 
Since a major interest lies on EU price volatilities, it was necessary to include the dominant 
oilseed in Europe, rapeseed. Due to data availability problems, we had to use the futures 
prices in the EU. This should be kept in mind for interpreting the results. 

Table 5: Results group "oilseeds" 

Variable Soybean Rapeseed 
Soybean (US) volatility.l1 0.6897 -0.0358 

(0.0612) (0.0478) 

Rapeseed (EU) volatility.l1 
 

0.3449 0.7891 
(0.0969) (0.0757) 

Dollar strength volatility 0.3040 0.4114 
(0.1839) (0.1436) 

Constant 0.0198 0.0334 
(0.0215) (0.0168) 

Trend -0.0003 -0.0001 
(0.0002) (0.0001) 

Source: Own estimates.
 

We find the expected strong impacts of the own lagged volatilities. The dynamics are ana-
lysed in more detail in the next section. In this group, we find one significant cross effect, 
lagged rapeseed price volatility affect soybean volatility. This finding might be affected by the 
fact that rapeseed prices are price quotes from the MATIF futures market while the soybean 
prices are spot market prices. The former contain forward-looking information, at least up to 
the maturity of the nearest contract, and this might explain that rapeseed prices are found as 
the channel for volatility transmission.  

Among all the potential exogenous drivers tested, only the volatility of the US dollar ex-
change rate against a basket of other important currencies proved to be statistically signifi-
cant. The sign and magnitude of the estimated coefficient indicates a strong positive impact 
of this volatility on the rapeseed price volatility; for soybean volatility, sign and magnitude are 
similar but not as precisely estimated from the available data.  

Another remarkable feature is the negative sign of the trend parameters, although statistically 
insignificant in the rapeseed price volatility equation. The magnitude in both equations is 
small but the sign is consistently negative, indicating that price volatility has decreased over 
time (albeit at a low rate, about .003 % per month for soybeans). Nevertheless, this estimate 
indicates that price volatility, against conventional wisdom, did not develop uniformly across 
all commodities.  

Group 3: Selected vegetable oils 

The group of vegetable oils, augmented by biodiesel, shows the strongest extent of volatility 
spillovers. As implied by the GARCH estimations, own lagged price volatility plays an impor-
tant role in each equation, with the exception of rapeseed oil. The dynamics of the system 
are rather complex and hence postponed to the next section.  
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Table 6: Results group "vegetable oils" 

Variable Palm Oil Sunflower 
Oil Soybean Oil Biodiesel Rapeseed

Oil 
Palm oil (Malaysia) volatility.l1 0.4881 -0.4123 -0.1288 0.2623 0.5603

  
(0.1259) (0.2859) (0.1643) (0.0872) (0.9575)

Palm oil (Malaysia) volatility.l2 0.3563 0.4002 0.0122 -0.1896 -1.1738
  (0.1167) (0.265) (0.1523) (0.0809) (0.8876)
Sunflower oil (Netherlands) 
volatility.l1 0.1203 0.5082 0.0438 -0.0767 0.4301

(0.0608) (0.138) (0.0793) (0.0421) (0.4623)
Sunflower oil (Netherlands) 
volatility.l2 -0.0360 0.0146 0.1030 0.0896 1.1100
  (0.0469) (0.1064) (0.0612) (0.0325) (0.3551)
Soybean oil (Argentina) volatili-
ty.l1 0.2576 0.5075 0.8788 -0.0664 -0.9153
  (0.0767) (0.1743) (0.1001) (0.0532) (0.5832)
Soybean oil (Argentina) volatili-
ty.l2 -0.2032 -0.3862 -0.0920 0.0165 1.0307
  (0.0755) (0.1714) (0.0985) (0.0523) (0.5743)

Biodiesel (Germany) volatility.l1 0.0427 -0.0371 0.1844 0.8155 1.2525
  (0.078) (0.1771) (0.1018) (0.054) (0.593)

Dollar strength volatility 0.1252 0.1971 0.1753 0.0306 -0.2058
  (0.0466) (0.1057) (0.0608) (0.0323) (0.3527)

SOI positive (La Niña)  -0.0010 0.0053 -0.0021 0.0029 0.0043
  (0.0017) (0.0038) (0.0022) (0.0011) (0.0126)

Constant -0.0135 0.0581 0.0269 0.0131 -0.0878
  (0.0101) (0.023) (0.0132) (0.007) (0.0771)

Trend 0.0000 0.0000 -0.0001 0.0000 -0.0008
  (0) (0.0001) (0) (0) (0.0003)

Source: Own estimates.

For the exogenous drivers, only two of all candidates considered turned out to be statistically 
significant. The volatility of the strength of the US dollar has a positive impact on the price 
volatility of palm oil, sunflower oil and soybean oil. The point estimates for all commodities 
point into the same direction, with the exception of rapeseed oil. This difference in signs, 
however, is not surprising since rapeseed oil price formation is largely intra-EU (and heavily 
policy driven in most EU member states).  

The only exogenous driver of biodiesel price volatility that is statistically significant is the 
positive part of the Southern Oscillation Index, i.e., the observations which capture a "La 
Niña" constellation. Since an impact of "La Niña" are dry summers in the Northern hemi-
sphere, negative impacts on the harvest in Northern Europe and therewith on the input fac-
tors for biodiesel production are expected. Hence, "La Niña" has an increasing effect on bio-
diesel price volatility. 

Another interesting result is the negative and statistically significant estimate for the trend 
parameter in the rapeseed oil equation. Once more, we find a downward trend in price vola-
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tility here - possibly a consequence of the policy framework driven by the EU renewable en-
ergy directive.  

Group 4: World sugar and Brazilian bioethanol 

The remarkable result in this group is the lack of any statistically significant cross effects of 
lagged price volatility. Both price volatilities are driven by their own lagged volatility but not by 
those on the corresponding other market in this group.  

Table 7: Results group "sugar" 

Variable 
Sugar 
No.11 

Bioethanol 
(Brazil) 

Sugar (World) volatility.l1 0.6167 0.0006
  (0.0702) (0.0111)
Bioethanol (Brazil) volatil-
ity.l1 0.1365 0.5751
  (0.4764) (0.0753)

Crude oil price volatility -0.1069 -0.0023
  (0.0434) (0.0069)

Speculation -0.4744 0.0184
  (0.1455) (0.023)

Constant 0.6037 0.2141
  (0.3016) (0.0476)

Trend -0.0001 0.0000
  (0.0002) (0)

Source: Own estimates.

Statistically significant estimates for the potential drivers are only found in the sugar equa-
tion. These were price volatility of crude oil and our proxy for excessive speculation (Work-
ing's T index). Both have a negative sign, among which the negative sign for oil price volatil-
ity might look surprising at a first glance. However, in this group, the volatility decreasing im-
pact of oil price volatility can actually be explained from the specific interdependence be-
tween the two markets. In Brazil, most sugarcane processing factories can easily switch be-
tween the production of sugar and the production of bioethanol. Crude oil, bioethanol and 
sugar price levels have been found cointegrated by Serra et al. (2011). In particular, ethanol 
price levels were found to follow crude oil prices. Then, from the perspective of a sugar proc-
essor in Brazil, elevated oil price volatility makes returns from ethanol production more un-
certain. Hence, sugar production will be ceteris paribus more attractive than with lower oil 
price volatility. This supply response in sugar markets will then relax the balance between 
supply and demand on the sugar market, and thus pave the ground for more stable sugar 
prices.  

The negative impact of the speculation proxy on price volatility is in line with a growing body 
of literature (Brümmer et al. 2013b)  which points towards a stabilising impact of speculation. 
The increased liquidity, and the information brought into the market by additional speculators 
seems to reduce price volatility, at least in the sugar market. 
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Group 5: European pork and major feedstock components 

In this group, the interdependencies in price volatility are found among the feedstock compo-
nents but not with the pork prices. This might be caused by the different spatial dimension of 
the markets considered (pork prices are from the EU). Nevertheless, there is a strong inter-
dependency between corn and soybean meal which will be discussed below.  

Table 8: Results group "meat" 

Variables Pork Corn Soybean meal 
Pork (Germany) volatil-
ity.l1 

0.8893 0.0472 0.0103
(0.0285) (0.061) (0.0174)

Corn volatility.l1 -0.0057 0.4807 0.0884
  (0.0267) (0.0571) (0.0163)

Corn volatility.l2 -0.0104 -0.1623 -0.0206
  (0.029) (0.062) (0.0176)
Soybean meal (US) vola-
tility.l1 

-0.0202 0.4256 0.6572
(0.1026) (0.2195) (0.0625)

Soybean meal (US) vola-
tility.l2 

0.0536 -0.3933 0.1540
(0.0973) (0.2082) (0.0593)

SOI positive (La Niña)  0.0015 0.0197 -0.0043
  (0.0044) (0.0095) (0.0027)

CornProjectionUsDiff_rel 0.0395 0.2413 0.0022
  (0.0208) (0.0446) (0.0127)

CITlongChange_rel -0.0550 -0.7211 -0.0053
  (0.076) (0.1625) (0.0463)

Constant 0.0304 0.1519 0.0196
  (0.014) (0.0299) (0.0085)

Trend 0.0000 0.0002 0.0000
  (0) (0.0001) (0)

Source: Own estimates.
 

The exogenous drivers are mainly found in the US corn equation. This is the only case for all 
groups analysed, except for the quantitatively small impact on biodiesel in the vegetable oil 
group, where the "Southern Oscillation" index is statistically significant. Only the positive part 
of it has a positive impact on price volatility. Since this scenario typically leads to dry sum-
mers in the Northern hemisphere, and this is unfavourable for corn production in the US, the 
volatility-increasing effect of a high positive impact is expected. 

This equation also is the only case where the information-related proxy is statistically signifi-
cant. New information, in this case in the form of a large change to the USDA's WASDE16 
ending stocks projection, drive up price volatility. This result is also found in the pork price 
equation, albeit at a quantitatively much less important level.  

Finally, the financialisation variable, which is constructed as the relative change in long posi-
tions from the CTFC data, is statistically significant. The sign is again negative, indicating 
that financialisation has a price volatility reducing impact.  

                                                 
16 World Agricultural Supply and Demand Estimates Report 
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In order to give a comparative perspective on the impact of the potential drivers on price 
volatility across all commodity groups, we provide a summary of the parameter results in 
Table 9 below. We reuse the categories which were defined in the introduction to summarize 
the various potential drivers in the first column. The second column contains the number of 
commodities for which each driver was tested. This number is then distributed over the fol-
lowing columns, whether we find an increasing, statistically insignificant, or decreasing effect 
of the driver on price volatility. 

Table 9: Identified drivers 

  
commodities 

tested 
increasing 

effect 
not signif-

icant 
decreasing 

effect 
Financialisation & Speculation 15 0 12 3

Oil 15 2 12 1

Low stocks 13 2 11 0

Revison of stock projections 13 2 11 0

Exchange rate 15 6 9 0

Increased consumption 15 0 15 0

Weather shocks 15 2 13 0
Source: Own estimates.

The most striking result is the low number of statistically significant parameter estimates; for 
each of the categories in the rows of Table 9, the number of insignificant parameters clearly 
dominates. This finding, however, should not be viewed too critical, though. The estimated 
price volatilities are based on the residuals of a GARCH model, where, besides the temporal 
dynamics of the conditional heteroscedasticity, the residuals are assumed to be white noise. 
It is not surprising that the conditional standard deviations are then hard to explain by adding 
additional information in the form of the potential drivers.  

Nevertheless, we find that exchange rates, more precisely the volatility of the strength of the 
US dollar, to be significant in 40% of the markets analysed. This finding highlights the gen-
eral relevance of macro-economic factors in shaping price formation on agricultural markets, 
and in particular, the role of the volatility of the US dollar. Although the role of the US dollar  
for international agricultural trade has certainly not increased over time, the dollar volatility 
remains a major driving factor because there are at least two channels through which it af-
fects price volatility on agricultural markets. First, there is a direct impact since a huge share 
of international agricultural trade is carried out in US dollars. Second, there is an indirect 
channel since elevated levels of dollar volatility are indicative of high uncertainty of the gen-
eral macro-economic environment, thus affecting agricultural markets mainly via the demand 
side. 

This second channel is also important for oil, where price volatility of only two of the tested 
commodities is a statistically significant volatility driver. Direct transmission takes place via 
the biofuels channel, this is at least suggested by the fact the oil price volatility was only sta-
tistically significant in systems where at least one biofuel was included.  
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Weather shocks are surprisingly seldom an identifiable driver of price volatility. This might be 
related to the measure of weather shocks which was used here. The Southern oscillation 
index captures more the general, longer term tendency towards 'El Niño', or 'La Niña', re-
spectively. A localized and temporally more fine-grained measure would most likely yield 
more impressive results in such an ex-post analysis.  

Consumption, as proxied by, the GDP growth variable, is not statistically significant in any of 
our monthly volatility systems. As with weather shocks, it is difficult to construct an appropri-
ate short-run measure of consumption changes that would better be able to explain price 
volatility at this temporal resolution.  

Finally, we do not find any hint that financialisation or speculation act as volatility increasing 
factors, as was discussed in the public over the past years. This is in line with the majority of 
the recent literature (Brümmer et al. 2013b), which points to the same pattern as we found 
here: If there is any statistically significant impact of financialisation or speculation proxy var-
iables on price volatility, then it is likely to be volatility-reducing. 

6.2.  Volatility spillovers 

The VAR model allows us to detect and quantify volatility spillovers between different com-
modities by means of lagged volatilities of all products within a product group. There are two 
main issues that we address in our analysis of volatility spillovers. The first one is the statisti-
cal significance of lagged volatilities referring to other products within the VAR model. The 
second issue is the economic significance of spillovers. Such economic significance is par-
ticularly strong if the initial effect on volatility is large and persists over long periods. The first 
issue can be judged via t-statistics. The second issue is addressed via impulse-response 
functions that quantify the effects of volatility shocks and show how these effects accumulate 
or fade out over time. We provide a graphical depiction of the impulse responses below. The 
dashed lines in the figures indicate 95% bootstrapped confidence intervals. We discuss our 
results separately for each group of commodities. 

Grains: For all four products in this group we observe that the own lagged volatility is signifi-
cant with the expected positive sign (see Table 4). This result shows the well known volatility 
persistence that we capture with our GARCH model. For wheat and corn, no lagged volatility 
of any other product is significant, i.e., there is no indication of a volatility spillover from any 
of the markets to the wheat or corn market. Bioethanol and ammonia show a different pic-
ture. There are some significant coefficients for the lagged volatilities of other markets. How-
ever, the specific effects are difficult to judge because the coefficients have different signs 
and more than one other market is involved. We therefore have to study the dynamics of the 
whole system. The impulse-response functions are very instructive in this respect. They are 
presented in Figure 2. The reactions of wheat and corn to volatility shocks confirm the lack of 
volatility spillovers. The only significant effect is a shock in the own volatility. For bioethanol, 
we observe a significant volatility increase due to a volatility shock in the wheat market. 
However, the effect is not immediate but materializes with some time lag due to system ef-
fects. For ammonia, we observe an immediate volatility increasing effect of a shock in the 
corn market. In summary, our results for the group of grains show that wheat and corn are 
unaffected by spillovers but the volatilities of bioethanol and ammonia react to volatility 
shocks in the wheat or corn market. 
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Figure 2: Impulse response functions for group 1 (wheat, corn, bioethanol, ammonia) 

Oilseeds: The dynamic effects of volatility shocks in this second group are rather straightfor-
ward (see Table 5). There is volatility persistence for both soybeans and rapeseeds, a 
lagged impact of the previous month’s rapeseed volatility on the volatility of soybeans, and a 
rather strong contemporaneous effect (residual correlation of 0.37). The lagged impact of 
rapeseeds on soybeans is likely to be caused by the fact that rapeseed volatilities are esti-
mated from futures prices, whereas soybean volatilities are obtained from spot prices. Be-
cause the former are (partially) based on expectations of the market developments until ma-
turity of the futures, they may well have explanatory power for next month’s spot price. This 
effect would explain the lead of the futures market over the spot market. However, from the 
economic functioning of the soybean and rapeseed markets, we would expect a lead of the 
former. Therefore, for the impulse-response analysis, we attribute the contemporaneous ef-



 

fects to a shock in the soybean market. The results of this analysis are provided in Figure 3. 
As the impulse-response functions show, there are significant spillover effects in both direc-
tions. 

 
Figure 3: Impulse response functions for group 2 (soybean, rapeseed) 

Vegetable oils: The group that contains the vegetable oils has the most complicated dynamic 
structure of all groups. For each of the five products, there is at least one lagged volatility of 
another product that shows a statistically significant impact (see Table 6). In such a complex 
system, the best way to understand the spillover effects is via the impulse-response func-
tions. These are shown in Figure 4. Because of some high contemporaneous correlations in 
the residuals, it is important to specify if a shock in one product affects other products simul-
taneously. The results that we show are based on the following ordering of contemporaneous 
effects: palm oil, soybean oil, rapeseed oil, sunflower oil, and biodiesel. The first product in 
this list (palm oil) affects all other product contemporaneously, but not vice versa. The sec-
ond product (soybean oil) affects rapeseed oil, sunflower oil, and biodiesel, but is not af-
fected by them, etc. 

According to the impulse responses, there are significant effects of palm oil volatility on all 
other products. However, the impact on rapeseed oil and biodiesel price volatility is not im-
mediate but shows a delay of two months. A shock in soybean oil volatility significantly in-
creases the volatilities of sunflower oil and rapeseed oil. Sunflower oil has an impact on 
rapeseed oil. Finally, shocks in rapeseed oil and biodiesel have no impact on the volatilities 
of the other markets. In summary, our results show a very high interconnectedness between 
the five products in terms of volatility spillovers. Moreover, there is some evidence that the 
markets for palm oil and soybean oil take a lead and the markets for rapeseed oil and bio-
diesel mainly react.     
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Figure 4: Impulse response functions for group 3 (palm oil, rapeseed oil, biodiesel, soybean 
oil, sunflower oil) 

Sugar: The dynamic structure of the resulting VAR model is very simple for the group with 
sugar and bioethanol. As the results of Table 7 show, there is persistence in both volatilities 
and no spillover, neither via lagged volatilities nor via a contemporaneous correlation of the 
residuals (it takes a value of -0.03). This observation is fully confirmed by the impulse-
response functions as provided in Figure 5. 
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Figure 5: Impulse response functions for group 4 (sugar, bioethanol) 

Meat: An interesting question for this group is whether volatility in pork prices is affected by 
volatilities in the major feeds soybean meal and corn. The answer given by our VAR model is 
that no significant spillovers exist. There are no significant coefficients of the feeds’ lagged 
volatilities (see Table 8) and the residual correlations are very low. This result is fully con-
firmed by the impulse-response functions Figure 6. Soybean meal and corn, however, are 
clearly interrelated. There are spillovers in both directions, from soybean meal to corn and 
from corn to soybean meal. 
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Figure 6: Impulse response functions for group 5 (corn, soybean meal, pork) 

7. Conclusions 

In this study, we have addressed a comprehensive price volatility assessment for five major 
agricultural commodity groups. Estimating price volatility on each market in a standardised 
GARCH framework opened up the possibility of shedding light on the dynamics in each 
group by analysing the estimated price volatilities in a VAR system. In particular, we were 
able to identify the role which was played by a number of 'suspects' which had been previ-
ously discussed in the existing literature.  



 

The findings indicate that price volatility developments are far from homogenous across the 
markets considered. In some markets, price volatility exhibits an increasing trend over the 
sample period, in others, the trend was the other way around. In consequence, a uniform 
impact of the drivers tested in the VAR framework cannot be generally expected.  

The findings of the VAR approach support this view since many of the potential drivers which 
we tested did not show any statistically significant impact on agricultural price volatility. This 
result is not unexpected since price volatility is notoriously hard to explain.  

The most frequently identified impact is found for the exchange rate volatility, as measured 
by the volatility of the strength of the US dollar. In the 40% of the cases where a statistically 
significant impact was found, exchange rate volatility turns out to be driving price volatility of 
agricultural commodities upwards. In a similar vein, the impact of low stocks, measured by 
the corresponding stocks-to-use ratio, was in the same direction whenever it was statistically 
significant. Relatively low stocks exert an upward pressure on price volatility, too. Finally, 
weather shocks and oil prices were also of importance for price volatility developments in 
specific markets. 

Although a statistically insignificant parameter estimate should not be misinterpreted as a 
definite proof that the corresponding variable has no impact at all, the results on financialisa-
tion and speculation are striking. We never observe the often postulated volatility increasing 
impact of financialisation and speculation. On the contrary, when any of the variables was 
found to be statistically significant, the impact of agricultural price volatility is volatility de-
creasing.  

Looking at price volatility spillovers within each group, we find varying degrees of dynamics 
between the markets included. The most complex picture emerges in the vegetable oils 
group. One explanation for this is the relatively high extent of substitution possibilities among 
the vegetable oils. Palm oil price volatility has the strongest impacts on all other markets, 
followed by soybean oil. On the other hand, price volatilities of biodiesel and of rapeseed oil 
do not exert any visible impact on the two aforementioned markets. In the grains complex, 
interdependence in price volatility for wheat and corn was found to be of less importance. 
This suggests that the price volatility dynamics are mostly driven by market-specific factors, a 
result that is corroborated by the small role which the potential drivers play in these markets.  

What do these findings now imply for future policy design? One important implication 
emerges from the observed heterogeneity in the results. There is no silver bullet for coping 
with excessive levels of price volatility in agricultural markets. The development of price vola-
tility over time differs a lot, and the impact of the potential drivers does so as well. In particu-
lar, we find no evidence that financialisation and speculation are among the culprits for ele-
vated levels of agricultural price volatility. In consequence, our findings do not support the 
notion that the introduction of position limits, a key element of the MIFID reform, helps in 
curbing price volatility on agricultural markets.  

An unanimous picture (although tainted by a dominating share of statistically insignificant 
parameter estimates) emerges for the role of stocks. However, this does not necessarily 
suggest that storage polices are a viable policy option. First, it should be noted that we never 
find a statistically significant impact of the stocks kept in a single country (in our analysis, the 
US stocks which were included in several cases). This might point to the futility of country-
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specific buffer stocks. However, global buffer stocks schemes are unlikely to be viable be-
cause of their relatively high costs, and the incentives for free-riding. On the other hand, im-
proving the access to public information on stocks might be a more promising way, as also 
supported by our findings on the role of revisions of stock projections in the price volatility of 
corn.  

One common pattern across all groups and markets within each group is the strong role 
played by lagged own price volatility. In combination with the overall picture of a limited and 
heterogeneous contribution of our broad set of potential drivers, this suggests that price vola-
tility on agricultural markets is largely driven by factors which are specific to each market. 
Thus, policies for limiting price volatility would have to be fine-tuned to the market in ques-
tion. Given that price formation for the agricultural products which we have analysed takes 
mostly place on a global scale, this amounts to an almost insurmountable barrier for effective 
policy. This suggests that a more promising approach might rely on policies which help pro-
ducers and consumers to cope with price volatility, instead of trying to curb price volatility.  
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Appendix 1. Drivers' details 

Crude oil price volatility: Calculation of model free implied volatilities 

The approach of Bakshi et al. (2003) requires an infinite continuum of strike prices of Euro-
pean options. Because only out of the money (OTM) options are needed, the implied volatili-
ties of all existing OTM American options17 are extracted via finite differences method. The 
risk free rate is approximated with the US treasury bill rate.18 To overcome the problem that 
only a finite range of discrete strike prices is available, a continuum of strike prices is gener-
ated by applying the curve fitting method to implied volatilities for interpolating between the 
minimum and maximum available strike prices and by constant extrapolation for strike prices 
below (above) the minimum (maximum) strike price (see (Jiang & Tian 2005)).19 Finally, 
thousand values are extracted from the volatility curve on the interval ሾ0.003 · ܵሺ0ሻ; 3 · ܵሺ0ሻሿ 
with ܵሺ0ሻ being the price of the underlying futures contract, and the respective European op-
tion prices are calculated using Black's formula.20 Finally, with trapezoidal numerical integra-
tion the implied volatilities can be calculated following the procedure of  Bakshi et al. (2003). 
(for a similar procedure of adopting the model free volatility calculation see Chang et al. 
(2009)). 

Speculation / Financialisation 

Table 10: Futures trading data basis for speculation (S) and financialisation (F) measures 

Commodity Commodity Exchange  Basis for 
Wheat Chicago Board of Trade  S and F 
Wheat Kansas City Board of Trade  S and F 
Corn Chicago Board of Trade  S and F 

Soybeans Chicago Board of Trade  S and F 
Soybean oil Chicago Board of Trade  S and F 

Sugar No. 11 Coffee, Sugar &  
Cocoa Exchange 

Jan. 1990 - Dec. 
2004 S 

 New York Board of Trade Jan. 2005 - Aug, 
2007 

S and F 
(since 2006) 

 ICE Futures U.S. Sept. 2007 - July 
2012 S and F 

Soybean meal Chicago Board of Trade  S 
 

Stock Data 

Every month USDA publishes a summary report of the United States', world's and some im-
portant countries' monthly projection of beginning stock, production level, imports, domestic 

                                                 
17 An option is filtered out from the further calculations if the option's price does not lie inside the pric-
ing boundaries or the option's strike price is lower than 0.5 times the underlying's price and higher 
than 1.5 times the underlying's price to filter out deep out of the money options that may cause noise 
because they are rarely traded. 
18 For options with a time to maturity between 1 and 31 days, the 1 month treasury bill rate is used, for 
options between 32 and 93 days to maturity, the 3 month treasury bill rate is used and so on.  
19 To get reliable results, this procedure is only done, if at least two Call and two Put options are avail-
able for a specific day. 
20 Black's formula is the adaption of the Black-Scholes-formula to options on futures, see Black (1976). 
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consumption, exports and ending stock for some major agricultural crops such as wheat,  
coarse grain, corn, rice, cotton, soybean, soybean meal, soybean oil. The monthly projection 
of each month is for the end of the same agricultural year. In this report, they estimate the 
same variables for the last two agricultural years. The agricultural year ends in May each 
year for the majority of crops and in June or July for some others. The data is available ap-
proximately  for most of the crops mentioned above since 197321. The projection and estima-
tion approach can be reviewed in WAOB (1999). The USDA does the same projection for 
some crops or products limited to the US such as sorghum, barley, oats, sugar, dairy prod-
ucts and meat. In this study, we have extracted the projection data for wheat, corn, soybean, 
soybean meal and soybean oil since 1990. This data is used to calculate the monthly projec-
tion changes and monthly stock to use ratio as influential factors on food price volatility. 
Figure 7 shows the stock to use ratio trend since 1990 for the major crops. As no more pro-
jection are available for the month May (or any month which is the last month of the agricul-
tural year) in this data series, we have used the last estimation value of the last agricultural 
year to cover the loop in the data series for change in stock projections at the end of the ag-
ricultural year. 

 

Figure 7: Stock to use ratio for wheat, corn, soybean and soybean oil in USA since 1990 

 

                                                 
21 http://usda.mannlib.cornell.edu/MannUsda/viewDocumentInfo.do?documentID=1194 
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Demand Increase 

The quarterly GDP of the emerging economies is calculated by using the OECD database22. 
The current purchasing power parity (PPP) for current prices is used for Brazil, Russia, India, 
South Africa and Indonesia from this database. For China, the quarterly data is used from the 
current prices' estimation (with current exchange rate) of china statistical center23. Figure 8 
shows the change of the sum of the quarterly GDP of the above mentioned countries. As we 
could not find quarterly GDP for some of the countries in OECD database for the beginning 
of 1990s, we have used the annual data and turned them to quarterly level. 

 

Figure 8: The GDP growth trend and relative changes of the quarterly GDP of the BRICS 
plus Indonesia 

Weather Shocks 

El Niño and La Niña: El Niño and the Southern Oscillation, also known as ENSO is a periodic 
fluctuation in sea surface temperature (El Niño) and the air pressure of the overlying atmos-
phere (Southern Oscillation) across the equatorial Pacific Ocean (NOAA 2014a). La Niña is 
the counterpart of El Niño. In El Niño years, when the rain area that is usually centered over 
Indonesia and the far western Pacific moves eastward into the central Pacific, the waves in 
the flow aloft are affected, causing unseasonable weather over many regions of the globe 

                                                 
22  http://stats.oecd.org/Index.aspx?DatasetCode=SNA_TABLE1# , last access: 27.01.2014. 
23 
http://data.stats.gov.cn/workspace/index?a=q&type=adv&m=hgjd&x=index&y=time&z=region&index=A01010
1&region=000000&time=-1,1986A&selectId=000000, last access: 27.01.2014. 
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(NOAA 1995). These two events are companied by a group of extreme weather in different 
parts of the world. 

Global El Niño Impacts: The impacts of El Niño upon climate in temperate latitudes show up 
most clearly during wintertime. For example, most El Niño winters are mild over western 
Canada and parts of the northern United States, and wet over the southern United States 
from Texas to Florida. El Niño affects temperate climates in other seasons as well. But even 
during wintertime, El Niño is only one of a number of factors that influence temperate cli-
mates. El Niño years, therefore, are not always marked by "typical" El Niño conditions the 
way they are in parts of the tropics. See list of impacts on the U.S. and list of impacts on oth-
er countries (NOAA 1995). 

Global La Niña Impacts: Globally, La Niña is characterized by wetter than normal conditions 
west of the equatorial central Pacific over northern Australia and Indonesia during the north-
ern hemisphere winter, and over the Philippines during the northern hemisphere summer. 
Wetter than normal conditions are also observed over southeastern Africa and northern Bra-
zil, during the northern hemisphere winter season. During the northern hemisphere summer 
season, the Indian monsoon rainfall tends to be greater than normal, especially in northwest 
India. Drier than normal conditions are observed along the west coast of tropical South 
America, and at subtropical latitudes of North America (Gulf Coast) and South America 
(southern Brazil to central Argentina) during their respective winter seasons (NASA 2014). 

SOI: The Southern Oscillation Index (SOI) is a standardized index based on the observed 
sea level pressure differences between Tahiti and Darwin, Australia. The SOI is one meas-
ure of the large-scale fluctuations in air pressure occurring between the western and eastern 
tropical Pacific (i.e., the state of the Southern Oscillation) during El Niño and La Niña epi-
sodes. In general, smoothed time series of the SOI correspond very well with changes in 
ocean temperatures across the eastern tropical Pacific. The negative phase of the SOI rep-
resents below-normal air pressure at Tahiti and above-normal air pressure at Darwin. Pro-
longed periods of negative (positive) SOI values coincide with abnormally warm (cold) ocean 
waters across the eastern tropical Pacific typical of El Niño (La Niña) episodes (NOAA 
2014b). Figure 9 shows the SOI general trend. SOI is calculated as below (NOAA 2014b): 

 

ܫܱܵ ൌ
Standardized Tahiti െ  Standardized Darwin

MSD  

Standardized Tahiti ൌ
ሺActual Tahiti SLP െ  Mean Tahiti SLPሻ

Standard Deviation Tahiti
 

where 

Standa  De
ඥሺ∑ ሺActual Tahiti SLP െ  Mean Tahiti SLPሻ²ሻ

rd viation Tahiti ൌ
ܰ

 

where ܰ ൌ  ݏ݄ݐ݊݋݉ ݂݋ ݎܾ݁݉ݑܰ

and 

MSD ൌ  Monthly Standard Deviation ൌ
ඥሺ∑ ሺStandardized Tahiti െ  Standardized Darwinሻ²ሻ

ܰ
 

where N = Number of months in the summation. 
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Figure 9: SOI trend since 1990 

 
  



 

Appendix 2. Group specific overview of drivers 

The following tables show a summary of the endogenous variables and the exogenous driv-
ers for the different groups. As the starting point is different in each group, those drivers that 
are in common in all groups have in each group different starting dates and therewith differ-
ent characteristics. Therefore, the tables are separate for each group and capture those 
characteristics that are in the specific dataset used for the VAR model. 

Table 11: Group 1, grains (October 1991 - July 2012) 

Variable Mean SD Minimum Maximum 
Crude oil price ($/Barrel) 43.111 29.376 11.346 133.890 
Crude oil price volatility 36.34% 11.83% 17.49% 104.13% 
Dollar strength (in base year = 100) 87.711 10.627 69.005 112.196 
Dollar strength volatility 0.060 0.026 0.013 0.175 
GDP %- change 2.89% 6.61% -11.70% 41.15% 
SOI positive 0.469 0.646 0.000 2.900 
SOI negative 0.352 0.554 0.000 3.100 
Speculation Index grains 1.115 0.050 1.020 1.258 
Financialisation grains 1.93% 3.53% -19.90% 19.42% 
Year-End Stock Projection %-change 
wheat 0.05% 6.95% -19.43% 25.95% 

Year-End Stock Projection %-change 
corn 0.14% 12.43% -47.69% 50.61% 

Stock-to-use ratio wheat 0.509 0.146 0.211 0.914 
Stock-to-use ratio corn 0.170 0.070 0.058 0.336 
Wheat (Hard) volatility 30.59% 8.15% 20.03% 59.15% 
Wheat (Soft) volatility 33.67% 8.27% 24.67% 58.07% 
Corn volatility 29.21% 11.74% 18.00% 79.69% 
Bioethanol volatility 26.81% 9.58% 13.67% 49.85% 
Ammonia volatility 53.38% 25.55% 36.88% 251.47% 
 

Table 12: Group 2, oilseeds (May 2003 - July 2012) 

Variable Mean SD Minimum Maximum 
Crude oil price ($/Barrel) 70.103 24.412 28.183 133.890 
Crude oil price volatility 39.48% 12.81% 25.18% 104.13% 
Dollar strength (in base year = 100) 79.116 6.291 69.005 94.232 
Dollar strength volatility 0.069 0.028 0.027 0.175 
GDP %- change 2.42% 2.57% -5.63% 7.13% 
SOI positive 0.613 0.764 0.000 2.900 
SOI negative 0.223 0.443 0.000 3.100 
Speculation Index soybean 1.115 0.051 1.047 1.224 
Financialisation soybean 1.10% 5.57% -20.67% 14.32% 
Year-End Stock Projection (US) %-
change soybean 0.02% 17.32% -38.46% 113.76% 
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Year-End Stock Projection (World) %-
change soybean -0.05% 4.28% -10.80% 14.96% 

Stock-to-use ratio soybean (US) 0.149 0.077 0.068 0.343 
Stock-to-use ratio soybean (World) 0.231 0.030 0.159 0.299 
Soybean (US) volatility 32.81% 10.89% 17.76% 70.95% 
Soybean (US, Kentucky) volatility 32.04% 6.16% 24.52% 58.80% 
Rapeseed volatility 22.49% 6.69% 14.93% 44.52% 
 

Table 13: Group 3, vegetable oils (August 2002 - July 2012) 

Variable Mean SD Minimum Maximum 
Crude oil price ($/Barrel) 67.675 26.330 26.401 133.890 
Crude oil price volatility 39.94% 12.70% 25.18% 104.13% 
Dollar strength (in base year = 100) 80.657 8.359 69.005 104.087 
Dollar strength volatility 6.75% 2.78% 2.70% 17.52% 
GDP %- change 2.41% 2.48% -5.63% 7.13% 
SOI positive 0.567 0.749 0.000 2.900 
SOI negative 0.245 0.442 0.000 3.100 
Speculation Index soybean oil 1.094 0.047 1.017 1.196 
Financialisation soybean oil 1.05% 7.30% -19.21% 34.45% 
Year-End Stock Projection (US) %-
change soybean oil 0.75% 8.16% -23.08% 23.53% 

Year-End Stock Projection (World) %-
change soybean oil 0.55% 5.85% -18.37% 19.00% 

Stock-to-use ratio soybean oil (US) 0.117 0.031 0.062 0.165 
Stock-to-use ratio soybean oil (World) 0.064 0.010 0.046 0.093 
Soybean Oil (US) 20.60% 3.33% 16.06% 32.28% 
Palm Oil (Malaysia) 22.76% 4.04% 17.98% 35.96% 
Rapeseed Oil (North West Europe) 23.36% 9.03% 15.69% 58.89% 
Sunflower Oil (US) 22.04% 3.37% 18.83% 38.82% 
Sunflower oil (Argentina) 26.47% 7.37% 18.86% 53.64% 
Soybean oil (Argentina) 29.22% 3.47% 23.79% 42.51% 
Biodiesel 11.63% 2.22% 7.67% 15.62% 
 

Table 14: Group 4, sugar (December 2002 - July 2012) 

Variable Mean SD Minimum Maximum
Crude oil price ($/Barrel) 68.461 25.114 28.183 133.890 
Crude oil price volatility 40.01% 12.96% 25.18% 104.13% 
Dollar strength (in base year = 100) 79.951 7.322 69.005 101.651 
Dollar strength volatility 6.81% 2.81% 2.70% 17.52% 
GDP %- change 2.42% 2.53% -5.63% 7.13% 
SOI positive 0.586 0.758 0.000 2.900 
SOI negative 0.234 0.443 0.000 3.100 
Speculation Index sugar 1.078 0.041 1.009 1.178 
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Financialisation sugar 2.14% 7.48% -28.08% 25.83% 
Sugar (raw) volatility 31.33% 8.00% 20.35% 62.12% 
Bioethanol (Brazil) volatility 55.03% 1.09% 52.02% 63.33% 
 

Table 15: Group 5, meat (February 1990 - July 2012) 

Variable Mean SD Minimum Maximum
Crude oil price ($/Barrel) 41.635 28.779 11.346 133.890 
Crude oil price volatility 36.92% 13.10% 17.49% 104.13% 
Dollar strength (in base year = 100) 87.835 10.277 69.005 112.196 
Dollar strength volatility 6.05% 2.56% 1.28% 17.52% 
GDP %- change 3.01% 6.77% -11.70% 41.15% 
SOI positive 0.447 0.631 0.000 2.900 
SOI negative 0.356 0.551 0.000 3.100 
Speculation Index feed grains 1.093 0.048 1.012 1.234 
Financialisation corn 1.74% 3.51% -20.42% 19.01% 
Year-End Stock Projection %-change 
corn 

-0.02% 12.19% -47.69% 50.61% 

Year-End Stock Projection %-change 
soybean meal 0.16% 6.94% -25.93% 42.86% 

Stock-to-use ratio corn 0.173 0.069 0.058 0.336 
Stock-to-use ratio soybean meal 0.009 0.002 0.006 0.017 
Pork volatility 24.32% 8.99% 14.34% 73.22% 
Corn volatility 28.59% 11.63% 17.72% 79.69% 
Soybean Meal volatility 22.05% 4.81% 16.37% 47.99% 
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Appendix 3. Estimated volatilities of the commodities 

 

 

  

Figure 10: Example for Group 1 
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